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SUMMARY 

The volume-of-fluid (VOF) method is a simple and robust technique for simulating free surface flows with large 
deformations and intersecting fiee surfaces. Earlier implementations used Laplace’s formula for the normal stress 
boundary condition at the interface between the liquid and vapour phases. We have expanded the interfacial 
boundary conditions to include the viscous component of the normal stress in the liquid phase and, in a limited 
manner, to allow the pressure in the vapour phase to vary. Included are sample computations that show the 
accuracy of added third-order-accurate differencing schemes for the convective terms in the Navier-Stokes 
equation (NSE), the viscous terms in the normal stress at the interface and the solution of potential flow in the 
vapour phase coupled with the solution of the NSE in the liquid phase. With these modifications we show that the 
VOF method can accurately predict the instability of a thin viscous sheet flowing through a stagnant vapour phase. 
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1. INTRODUCTION 

Current techniques for computational analysis of free surface flows include primarily Lagrangian and 
Eulerian approaches. Reviews of free surface techniques can be found elsewhere, particularly in 
References 1-4. In this paper we present a Eulerian approach with advantages in a broad class of free 
surface flow problems with large surface deformations. Finally we present results of several test 
problems which show the accuracy possible with these refinements. 

Regardless of the method used to track the location of the interface, the equations to be solved for 
isothermal, incompressible flow are the continuity equation 

v . v = o  (1) 
and the Navier-Stokes equation (NSE) 

av 1 
- + v ~ v v = g - - v P + v v 2 v ,  at P 

where v is the velocity vector, g is a body forced vector, P is the pressure, p is the density and v is the 
kinematic viscosity. These equations are solved subject to boundary conditions at the edges of the 
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computational domain, along interior obstacles and at the interface between the liquid and vapour 
phases. 

There is no doubt that the extension of a free surface computational method to a two-phase problem 
would be trivial if the same equations were applied to both phases and solved along with the full 
interface  condition^.^ However, when the viscous effects in the gas phase are not important, then it is 
considerably more cost-effective to solve the inviscid equations for the gas phase. In this study we 
present the formulation and results for a viscous liquid phase adjacent to an inviscid gas phase. Also, 
because of the large difference in dynamic viscosity between the phases, the viscous region of the gas 
phase is very often limited to a thin boundary at the interface. To correctly impose the interfacial shear 
stress, the boundary layer needs to be numerically resolved at great computational expense. There is a 
large class of two-phase flow problems where one is only concerned with the pressure variations along 
the interface and not the viscous boundary layer. For these problems one can either consider the full 
equations in both phases and neglect the shear stress at the interface (which may be difficult to 
implement numerically) to avoid the computational expense of having to resolve the gas boundary 
layer or one can assume that the gas phase flow is irrotational and only consider the inviscid equations 
for the gas phase along with the full equations for the liquid phase, as we have done in this study. We 
outline the method, followed by an example problem involving the Kelvin-Helmholtz-type instability 
of a liquid sheet emanating from a circular jet impinging on a plate. 

The interfacial boundary conditions are derived from the velocity and stress balances at the interface 
and the continuity of velocity. We begin with the definition of the stress balances by defining a 
localized auxiliary function for the location of the interface, 

H(x,  y )  = y - q(x)  = 0. (3) 

The unit surface normal vector n = (nx, n,) is computed from the gradient of H(x, y )  as 

n, = -q’(q’2 + 1)+2, (4) 

where q’ = @/ax. The unit tangential vector t = (rx, r,,) may then be computed from the orthogonality 
condition as 

2, = (q’2 + 1)+2, 

Finally, the surface curvature K is given by 

( 5 )  

With these definitions in mind and the assumption of an inviscid vapour phase the boundary 
conditions at the interface arising from the normal and tangential stress balances 

P I - n - z l - n = P , - c K  (7) 

(8) 

and 

t - TI - n = 0 

respectively, where subscripts ‘l’ and ‘v’ refer to the liquid and vapour phases respectively, CT is the 
surface tension and 

7 = p(Vv + VVT) (9) 

is the stress tensor. The remaining boundary condition at the interface is due to the continuity of 
normal velocity given by 

v! * n = v ,  - n. (10) 
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Since the vapour phase is assumed to be inviscid, continuity of the tangential component of velocity 
cannot be imposed. 

In our work we have chosen to use one of the volume-tracking techniques to retain the advantages of 
simplicity in treating flows with large deformations and folding free surfaces. In order to increase the 
range of problems which can be accurately studied with this technique, we have extended the SOLA- 
VOF method to include the viscous terms in the interfacial boundary condition and, in a limited 
manner, to allow flow of the vapour phase. As we will show below, the consideration of vapour phase 
flow and variations in pressure is critically important for stability analysis. 

The VOF method is derived from the first generally successful volume-tracking free surface 
programme, the marker-and-cell (MAC) method.6 The MAC method tracks the location of the fluid 
within a fixed Eulerian mesh through the use of massless marker particles. These particles are 
convected through the computational domain at the end of each time step using the interpolated local 
fluid velocity. The free surface is constructed from the cells partially filled with marker particles and 
having neighbouring empty cells. In the MAC method the normal stress boundary condition at the 
interface is simplified to 

PI = P". 

This simplified boundary condition, applied at the cell centre rather than at the actual interface 
location, greatly reduces the accuracy of the computational technique. The first use of donor-acceptor 
differencing in a MAC-type free surface method which considers both phases appears to be by 
Ramshaw and Trapp.' However, they neglect the effects of surface tension, which is often the critical 
parameter in free surface and multiphase flow problems 

The MAC method has evolved into the VOF technique, which can be looked upon as allowing the 
number of marker particles to become infinite and integrating to determine the fraction of the cell 
containing fluid. Thus the liquid is tracked by a step function F representing the fraction of each 
computational cell occupied by liquid. Transport of F through the computational mesh is governed by 
the F-convection equation 

- -V * V F ,  
aF _ -  
at 

which ensures that the amount of each phase is conserved. 
The interface between the phase is determined on a cellwise basis from local F-values. Cells with 

F = 1 are liquid cells, cells with F = 0 are vapour cells and cells with intermediate values of F are free 
surface cells. Once the free surface cells have been identified, the location and shape of the interface 
within the free surface cells may be reconstructed from gradients of the F-function. 

The VOF implementation, SOLA-VOF, included the effects of surface tension, yielding Laplace's 
formula 

P/ = P" - GK 

as the free surface boundary condition. In addition, the NASA-VOF7 technique incorporates an 
interpolation scheme for applying the boundary condition at the free surface location rather than at the 
centre of the computational cell. Improvements in algorithms for computing surface curvature and 
methods for treating obstacles within the computational domain and extension to three dimensions 
for cylindrical co-ordinates led to the NASA-VOF3D programme.8 However, all three programmes 
neglect the viscous components of the liquid normal stress in the liquid phase at the interface and 
assume that the pressure in the vapour phase remains constant. These assumptions impose severe 
limitations on the applicability of this method to free surface problems where viscous stresses are 
important. 

(13) 
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In the study of free surface flows such as the die swell problem, inclusion of the viscous terms in the 
interfacial boundary condition is ~ i t a l . ~ ' ' ~  Therefore implementations which neglect these components 
are unable to accurately solve this problem. In addition, in the study of the stability of thin liquid films 
the viscous terms at the interface and variations in the vapour phase pressure along the interface are the 
primary factors inducing instability and wave formation." 

For these reasons we extend the VOF technique to (1) allow inclusion of the liquid phase viscous 
stress at the interface, (2) allow variation of the pressure in the vapour phase and (3) greatly extend the 
applicability of the VOF method to free surface problems. We will outline the various solution 
algorithms, followed by the numerical treatment of the static contact line and the implementation of 
viscous components at the interface. Next the numerical solution of the vapour phase flow coupled 
with the liquid phase solution will be presented, followed by a comprehensive examination of the 
technique's accuracy. 

We solve the lid-driven cavity problem to examine the accuracy of the solution of the Navier-Stokes 
equations. The die swell problem is solved to test the implementation of the viscous stresses at the 
interface. Finally we solve for the stability of a liquid sheet and compare the results with those of linear 
stability analysis. We accurately compute the growth rate of waves in a thin liquid sheet in agreement 
with predictions from linear stability analysis. The above test problems are solved to demonstrate that, 
despite popular perceptions, this method can be very accurate and reliable when the complete 
interfacial condition is considered. 

2. NUMERICAL TECHNIQUE 

We begin the description of the numerical technique with a brief outline of the solution algorithm 
employed in the SOLA family of programmes. This is followed by a description of the additions we 
have made to improve the accuracy and extend the capabilities of our programme, IPST-VOF3D. 
Specifically, we highlight more accurate methods for differencing the convective terms in the NSE, 
modifications needed to treat a static contact point on an interior obstacle, inclusion of the viscous 
terms in the liquid at the interface and solution of the potential flow equations in the vapour phase to 
yield the pressure in the vapour phase. 

2. I .  SOU solution algorithm 

In the SOLA family of programmes the velocity and pressure fields are solved on a staggered grid 
(Figure 1). In this representation vector quantities are stored on cell faces and scalar quantities at the 
cell centres. 

Here we briefly describe the numerical method used to solve the NSE in the SOLA family of 

Figure 1 .  Schematic diagram of computational grid geometry 
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programmes. Generally this can be described by defining an explicit guess 

(14) ) 7 = v" + st g - - V P  + vv2v" - e .vv"  ( ;  
for the new velocity field, where the superscript n refers to the time step. Except as described below for 
the convective terms, the specific of the finite difference representations used can be found in 
References 7, 8 and 12. The velocity field after the time step can then be written as the explicit guess 
plus a correction term due to the pressure change across the time step, i.e. 

sr 
P 

""+I = 7 - - V(SP+'). (15) 

Since mass must be conserved at all times, we may substitute (1 5) into (1) to yield 

where V is the volume of the computational cell, needed to ensure a symmetric system of equations7 
The Poisson equation for pressure, (1 6), yields a sparse, symmetric linear system of equations that can 
be ,solved using a variety of numerical methods such as the successive overrelaxation (SOR) or 
conjugate residual (CR) methods.8 With the new pressure field available, the updated velocity field is 
then computed fiom (15). 

The F-convection equation (12) is solved using donor-acceptor differencing' to assist in 
maintaining a sharp interface between the liquid and vapour phases. Once the new fluid configuration 
has been obtained, it is possible to reconstruct the localized interface configuration needed for 
computation of the surface tension force.' Again the details of this process are presented 
e l~ewhere .~ ,~ , '~  

2.2. Diferencing of convective term 

As we will show below, as the Reynolds number increases, the accuracy of the finite difference 
representation of the convective terms in the NSE limits the accuracy of the entire solution. Therefore, 
in addition to the standard differencing for the convective terms present in the SOLA programme, we 
apply and evaluate three third-order-accurate differencing options: quadratic upstream interpolation for 
convective kinematics third-order-accurate upwind differencing and the 
method of Kawamura and Kuwahara (KANDK).12,'6 

As an example, the constant grid formula for the convective term involving the x-component of 
velocity in the x-direction is given by 

Analogous formulae have been developed for the remaining terms for grids with variable cell spacing, 
except as noted. Presentation of these formulae and their derivations can be found in Reference 12. 

The first technique used in the SOLA family of programmes consists of a linear combination of first- 
order-accurate upwind differencing and second-order-accurate central differencing. This leads to the 
constant grid formulae 
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where Ax is the cell spacing and a controls the fraction of central differencing. Setting a = 1 yields the 
first-order-accurate upwind differencing and setting LX = 0 yields second-order-accurate central 
differencing. Numerical stability considerations limit the fraction of central differencing.8 

The first of the three third-order-accurate differencing schemes is based on the QUICK differencing 
technique which uses quadratic upstream interpolation to compute the value of the convected variable 
at each face of a control v01ume.I~ These interpolated values are then used to form a centred finite 
difference formula, We have combined simplified forms of the QUICK interpolation f~rmuale’~  to 
yield the finite difference formulae 

for our implementation of QUICK differencing. 
The second of the third-order-accurate differencing techniques, THIRD, 

ui+1/2 < 0, ( 19b) 

was derived for constant 
grids by Agarwal.” This technique again uses upstream differencing for stability but is derived in a 
different manner.I2 The finite difference formulae for constant grid spacing are 

The final third-order-accurate technique, termed KANDK, is a differencing scheme developed by 
Kawamura and Kuwahara.I6 They used an alternative approach to derive a third-order-accurate 
scheme, beginning with a second-order-accurate upwind scheme and eliminating the term leading to 
the third-order error. The constant grid formulae for KANDK are 

Attempts to derive variable grid finite difference formulae in the manner used by Kawamura and 
Kuwahara were unsuccessful. Our derivation of a variable grid version of Kawamura and Kuwahara’s 
method is presented in the Appendix, with other details reported elsewhere. I 2  

2.3. Treatment of a static contact line 

Many free surface problems have a contact point or line which joins the liquid, vapour and solid 
phases. A static contact is an intersection between vapour, liquid and solid phases where the point of 
contact is fixed but the contact angle can vary. The variation in the contact angle is part of the solution 
and often has a significant effect on the free surface shape. An example is the die swell problem 
described below. 

In previous ~ t u d i e s ~ ~ ~ ~ ”  the dynamic contact lines are treated by modifying the surface tension 
component of the interfacial boundary condition in the cell adjacent to the wall. The contact angle is 
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specified in the programme input and the contact line determined from the local fluid configuration. 
The surface force is then computed from the contact angle and the surface tension. In the case of a 
static contact line we compute the contact angle from the local fluid configuration and then apply the 
surface force in the same manner as in the previous s t~dies .~ ,* , '~  

2.4. F ~ S C O U S  component of interfacial boundaiy condition 

As mentioned above, the previous VOF technique use a simplified boundary condition, equation 
(1 3), for the normal stress balance. To eliminae the assumption that the viscous terms in the interfacial 
boundary condition are negligible, we have included an option for computing the viscous forces. The 
local unit vector normal to the interface is computed in the manner used in Reference 8 during surface 
tension computations. Once the co-ordinate axis most nearly normal to the interface has been 
determined, a local height function analogous to (3) is computed and the unit surface normal is 
obtained from (4). 

Next the components of the viscous stress tensor (9) are computed using the provisional velocities 
?:, where only velocities within the liquid phase are included in the finite difference formulae. For 
example, with reference to Figure 2, the components of the viscous stress tensor, assuming constant 
grid spacing, are computed as 

With the viscous stress tensor and the unit normal vector available, the viscous component of the 
interfacial boundary condition is computed from n . z I  . n. 

Figure 2. Example fluid configuration for viscous term computation 
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2.5. PotentialJEow in vapour phase 

As stated above, for stability problems such as flow of a thin liquid sheet, allowing the pressure in 
the vapour phase to vary is vital. We have implemented a method for solving the potential flow 
equation in the vapour phase which is coupled to the h l l  NSE in the liquid phase through the 
interfacial conditions. This allows computation of the pressure in the vapour phase as a hnction of 
time and position. 

With the assumptions that the vapour phase is inviscid and the flow in the vapour phase is 
irrotational, the vapour phase may be modelled using the potential flow 

v2& = 0, (23) 

where +,, is the vapour phase potential. The pressure and velocities in the vapou phase are defined as 

34, 1 2 
p v  = - P v  - - zPvl VVI t at 

v, = v+,. (25) 

Therefore in the vapour phase we must solve Laplace's equation in a region with curved boundaries 
having Neuman boundary conditions. This is accomplished using standard second-order-accurate 
finite difference formulae for (23) in the bulk of the vapour phase and adjacent to straight boundaries. 
At the interface between the two fluids a more complex treatment is required. 

We have implemented a modified form of a second-order-accurate method for solving Poisson's 
equation in a region with curved boundaries having mixed boundary conditions. Bramble and 
Hubbard" define a second-order-accurate operator 

for the normal derivative using three points within the region of interest, where is the normal 
derivative of 4" at the surface point of interest, 4; are three points within the vapour phase and the 
coefficients ai are determined from the solution of the system of equations 

Here J i  and Xi are the distances from the surface point of interest to the points Qi in the normal and 
tangential directions respectively. In addition, Bramble and Hubbard" present criteria which ensure 
that the operator yields a diagonally dominant system of equations. 

The boundary condition for the vapour phase potential at the interface is the conservation of normal 
velocity, ( I  0). Thus the boundary operator is equal to the normal velocity in the liquid phase plus a 
small correction arising from the derivation, i.e. 

where vj is the normal velocity at the interface and avj,/Z is the tangential derivative of the normal 
velocity at the interface." The value of the vapour phase potential at the interface, needed to solve 
Laplace's equation, can be obtained by combining (27) and (28) and rearranging to yield 
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3 3 

i=  1 ; = I  
VF +(&?/%) C a;%F; + C a& 

(29) 4 0  = 3 
C ai 
i =  1 

As stated above, since we have assumed the vapour phase to be inviscid, no restrictions are placed on 
the tangential velocity at the interface. 

Incorporation of the liquid phase viscous terms and variations in the vapour phase pressure into the 
interfacial boundary condition yield the following solution procedure. First, compute the surface 
curvature from the local liquid configuration. Second, compute the surface normal velocity from the 
change in surface position and solve (23) for the vapour phase potential. Third, compute the vapour 
phase pressure from (24). Fourth, compute the explicit guess for the liquid phase velocity field from 
(14). Fifth, compute the interfacial liquid phase stress from (9). Sixth, compute the pressure on the 
liquid side of the interface from (13). Seventh, solve the Poisson pressure equation (16) to yield the 
new liquid phase pressure field. Eighth, update the liquid phase velocity field using (1 5) .  Finally, solve 
(12) to yield the new fluid configuration. 

This procedure may be repeated until the desired time is reached. The second and third steps have 
been added to allow for variations in the vapour phase pressure, while the fifth step is required for 
inclusion of the vapour phase viscous terms in the interfacial conditions. 

3. NUMERICAL RESULTS 

In this section we present results from three sample problems chosen to demonstrate the accuracy of 
each of the major extensions to the VOF family of programmes. First we present results for flow in a 
lid-driven cavity which demonstrate the accuracy of the convective term differencing schemes. Then 
we give examples of the die swell phenomenon where the liquid phase viscous component of the 
interfacial boundary condition is important. Finally we present results from a study of the stability of a 
thin liquid sheet flowing through an inviscid vapour phase. 

3.1. Flow in a lid-driven cavity 

The lid-driven cavity (LDC) problem is commonly used for testing numerical solutions of the NSE. 
We have chosen to use a square cavity (Figure 3) at Re = HV/v = 1000 and with an aspect ratio HI W =  1 

Velocity = 1.0 
T 

I t  w ___)I 
Figure 3. Schematic diagram of lid-driven cavity problem 
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Table I. Error for lid-driven cavity problem at Re = 1000 
~~ ~~ ~~ ~ ~ 

Convective term differencing 
scheme 

SOLA (a = 0.5) 
QUICK 
Third-order-accurate upwind 
Kawamura and Kuwahara 

Grid 

Constant Variable 

54.3% 38.8% 
15.4% 4.8% 
13.0% 4.2% 
12.4% 6.7% 

to test the accuracy of SOLA differencing with a = 0.5 and the three third-order-accurate techniques 
described above. 

Two computational grids were used for each differencing scheme, the first having 40 equally spaced 
cells in each direction and the second having cell spacings one-half the mean spacing adjacent to the 
walls and twice the mean spacing in the centre of the cavity. Results of these eight simulations, with the 
results of Ghia et a1.I9 included for comparison, are presented in Figure 4 for the horizontal component 
of velocity along the vertical centreline AB and in Figure 5 for the vertical component of velocity 
along the horizontal centreline CD. 

The accuracies in predicting the local extrema in Figures 4 and 5 for each case as compared with the 
results of Ghia et are presented in Table I. Using variable grid spacing, we were able to get within 
5% of the result of Ghia et al. while employing only 10% as many computational cells. 

Any of the third-order-accurate methods produced markedly superior results to SOLA differencing 
for this problem; however, all the third-order cases required longer computation times. While KANDK 
yielded the most accurate results for the constant grid, the accuracy of this method was the worst of the 

SOLA Differencing 

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Velocity 

Third Order Accurate Upwind 

-0.4 -0.2 0 0.2 0.4 0.6 0.8 I 

Velocity 

QUICK Method 

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Velocity 

Kawmura and Kuwoharn 

- n d m  n 0 2  0.4 0 6  0 8  I 

Velocity 

Figure 4. Plots of horizontal component of velocity along vertical centreline: A, Ghia er ....., variable grid; -, 
constant grid 
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SOLA Differencing 

I & 
-0.6 

0 0.2 0.4 0.6 0.8 1 

Position 

Third Order Accurate Upwind 

o 0 2  0 4  n6 0 8  1 

Posiiion 

QUICK Method 

0 0.2 0.4 0.6 0.8 1 

Position 

Kawomura and Kuwahara 

0 0 2 0.4 0 6  0.8 I 

Posit ion 

Figure 5.  Plots of vertical component of velocity along horizontal centreline: A, Ghia et ....., variable grid; -, 
constant grid 

third-order-accurate techniques for the variable grid. This difference in ranking is attributed to the 
inaccuracies present in the variable grid formulation of Kawamura and Kuwahara's'6 method as 
outlined in the Appendix. 

3.2. Cartesian die swell problem 

We have studied the Cartesian die sell problem (Figure 6) both with and without surface tension to 
test the accuracy of the computation of the liquid phase viscous stress at the interface. Relatively minor 
additions were necessary to modify the surface tension algorithm in Reference 18 to allow computation 
of the surface curvature for problems in Cartesian co-ordinates. Additional modifications to the 
velocity boundary conditions at the comer of the die were implemented in a manner analogous to that 
used by 

Results from a die swell case without surface tension at Re = HVIv = 300 and Ca- ' = d V p  = 0, 
where Y is the average inlet velocity, are presented. As shown in Figure 7(a), the initial condition 
consisted of the free surface level with the edge of the die. The initial velocity profile (Figure 7@)) was 

Details of these changes can be found in Reference 12. 

Symmetry Plane 

Figure 6 .  Schematic diagram of die swell problem 
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Figure 7. Results for die swell problem at Re = 300 and Cu- ' = 0 

parabolic throughout the liquid phase and the liquid phase viscous component of the interfacial 
boundary condition was included. Figures 7(c)-7(f) show the evolution of the solution as a function of 
time until a steady state solution was obtained. 

The predicted die swell for the case with Re= 300 and Ca-' = 0 is - 1566% This is in good 
agreement with results from the literature of - 15.24%'' and - 15.52%.*' Results from several 
solutions using different computational grids are presented in Table 11. All simulations used an 
entrance zone within the die of 3.5H and had varying domain lengths as indicated, while the 
computational grid was graded with the minimum cell spacing in each direction adjacent to the static 
contact line. 

Table 11. Results of solutions of die swell problem at Re = 300 and 
ca-' = 0 

Minimum cell spacing 

Domain length 0.04H @03H 0.02H 0.01H 

20H -14.48% -14.92% -15.20% -15.12% 
25H -14.78% -15.08% -15.52% -15.37% 
30H -15.05% -15.14% -15.62% -15.53% 
35H -15.19% -15.17% -15.66% -1563% 
40H -15.31% -15.21% -15.66% -15.67% 
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Table 111. Results of solutions of die swell problem at Re = 75 and 
ca-' = 2 

~ 

Number of 
y-direction Minimum cell spacing 

computational 
cells 0.0333 0.0278 0.0222 0.0 167 

30 -10.99% -11.61% -11.38% -11.26% 
36 -1162% -11.43% -11.53% 
45 -10.91% -11,37% 
60 - 11.05% 

* 
* * 
* * * 

*Combination not possible. 

Results of a similar series of solutions obtained for a case with surface tension at Re = 15 and 
Ca-' = 2 are presented in Table 111. In this case the accuracy of the solution was improved by 
increasing the number of computational cells in the direction perpendicular to the flow direction and 
refining the grid in the region adjacent to the corner of the die. The predicted die swell shows more 
scatter than in the previous case but remains in reasonable agreement with the literature results of 
- 1 1.16%,20 - 10.92%22 and - 10.48%.21 

3.3. Stability of a two-dimensional viscous liquid sheet 

The final test problem presented results from a study of the stability of a thin liquid sheet of fluid 
flowing through an inviscid vapour phase. Figure 8 presents a diagram of the problem. The variation in 
the surface position E shown in Figure 8 is assumed to be of the form 

(30) ot+ihx E = Ege 
where z0 is the initial amplitude, w = wr + ioi  is the complex growth rate, i = (- and k is 
the wave number of the disturbance. A linear stability analysis" yields dispersion relations for 
antisymmetric, 

o = (01 + 4 m 2 ~ ) o l  tanh(m) + 4m3z2{m tanh(m) + (m2 + o~/z) ' /~  tanh[(m2 + 01/2)'/~]} 

+jw2 + m3,  (31) 
and axisymmetric, 

0 = (&I + 4m2Z)& coth(m) + 4m3Z2(m coth(m) + (m2 + O I / Z ) " ~  coth[(m2 + W1/Z)1/2]} 

+jG2 + m3, (32) 

I Y  Vapor 

Vapor I 
Figure 8. Schematic diagram of sheet instability problem 
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2.5 1 I 

Antisymmetric - 
Li and Tankin 

Axisymmetric - 
Li and Tankin 

..__._. 

Antirymmetric - 
Computed 

* Axisymmetric - 
Computed 

I 
0 I 2 3 4 5  

Dimensionless Wavenumber 

Figure 9. Non-dimensional growth rate for We, = 40,Z= 0.1 and 5 = 0.1 obtained from numerical solution of Li and Tankin's' I 
dispersion relations. Open and full symbols represent results of our computational analysis 

disturbances. Here 0 = W, + iWeif20i, 0 1  = W + iWeif2m, 0, = o , ( t ~ / p ~ a ~ ) - ' / ~ ,  W, = o,(a/UO)m, 
a is the initial sheet half-thickness, m = ka is the dimensionless wave number, and Uo is the initial sheet 
velocity. The remaining parameters are defined as the Weber number We1 = plUia/o,  the Ohnesorge 
number Z = p1(p,aa)-'/* and the density ratio 

It is possible to solve the dispersion relations (31) and (32) for given We,, 2 and 3 to yield the 
complex growth rate W as a function of the wave number. The real part of 0 is the dimensionless 
growth rate of a disturbance with wave number m. Results for a case with Wei=40, Z=O.1 and 
= 0.1 are shown in Figure 9 for both antisymmetric and axisymmetric disturbances, represented by 

full and broken curves respectively. The data points plotted in Figure 9 represent our computed results 
for antisymmetric and axisymmetric disturbances, represented by full and open symbols respectively. 

Solutions at m = 1 were obtained on a computational domain of size 2za in the primary direction of 
flow and 8a perpendicular to the flow. This problem was discretized on a computational grid with 360 
cells constantly spaced cells in the direction of flow and 1 OU graded cells perpendicular to the primary 
direction of flow. The grading was done so that a region of constant cell spacing was maintained 
adjacent to the interface. Problems with larger wave numbers used the same computational grid with a 
shorter computational domain, keeping the number of computational cells per wave constant. 

The computed growth rates were obtained from an initial surface purturbation of 0.0001a, i.e. 0.5% 
of the computational grid spacing adjacent to the interface. Displacements of adjacent peaks and 
troughs on both sides of the fluid were tracked through over four e-foldings and the growth rate 
determined fiom the slope of the average displacement on a semilogarithmic plot. 

= p v / p I .  

4. CONCLUSIONS 

We have presented several extensions to the VOF method for tracking the location of the interface 
between a liquid and a vapour phase included in the SOLA method for solving the NSE. These have 
included more accurate methods for treating the convective terms in the NSE, a method for treating a 
static contact line, inclusion of the liquid phase viscous terms in the interfacial conditions and the 
ability to solve for flow in the vapour phase coupled with the flow in the liquid phase. 

These modifications allow the VOF technique to be applied to a wider variety of problems, 
including the die swell problem and study of the stability of a thin viscous sheet flowing through an 
inviscid vapour phase. We have shown that when the complete boundary conditions at the interface 
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between a viscous liquid and an inviscid liquid are imposed, the VOF technique coupled with the 
SOLA algorithm can in fact yield accurate solutions for complex problems. 
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APPENDIX: DERIVATION OF VARIABLE GRID KAWAMURA AND KUWAHARA METHOD 

We begin by reviewing the derivation of Kawamura and Kuwahara. This is followed by an attempt to 
directly reproduce their derivation scheme for a variable grid. Finally we will present our 
approximation of the variable grid KANDK method. For simplicity these derivations will be carried 
out using the points ui+2, ui+] ,  ui, ui+l, and ui+2 rather than the points at the cell faces used earlier and 
the constant grid spacing will be denoted h. 

Kawamura and Kuwahara k derivation 

We begin with a second-order upwind differencing scheme 

These formulae can be combined to yield a single formula independent of the flow direction: 

From Taylor series expansions this formula can be rewritten as 

Thus the leading error in (33) or (34) can be reduced by eliminating the term 

h2 d u  
2 ax3. 
-- 

Improved accuracy is obtained by replacing the first term in (35), 

with 

(37) 

(38) 
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Figure 10. Diagram of variable grid dimensions 

yielding 

The resulting analogue of (34) with error of 0(h4) is 

Attempt at Kawamura and Kuwahara k derivation with variable grid 

a variable grid. All derivations will be with respect to the dimensions shown in Figure 10. 
In this subsection we follow the steps of Kawarnura and Kuwahara's derivation as far as possible for 

For a variable grid (33) becomes 

24;-1 +- ui > 0,  
a+2b a + b  

ui - - 
ab 

Thus (34) can be rewritten as 

24;-1 +- a(a + b) 
C ui+2 +--*+I+(-- c + d  2c+d + p ) u i - T  a+2b a + b  

cd c(c + d )  b(a + b)  

u;-l +- c + d  2c+d a+2b  a + b  
cd C ( C I )  b(a +b) ab 

u;+2 - -u;+l+ (p + -->ui - - 

In order to continue with Kawarnura and Kuwahara's derivation, we begin by defining the terms in 
(35): 

au b c - b  C - + 0(h2)  = ____ ax u; - - 
b(b + c) ui-l' c(b + c) "+' + - bc (43) 

$24 6 ( ~  + 2b - C) 6(a + 2b - c - d )  
cd(a + b + c)(b + c) 

(ui+~ - ui) 1+2 - u;) - d(c + d)(b + c + d)(a + b + c +d)(" + 0(h4)  = 

(44) 
6(d + 2c - b - a) 6(d + 2~ - b)  

(ui-2 - ui), +ab(b + c + d)(b + c)  - ") - a(a + b)(a + b + c)(a + b + c + d )  

&4 24 24 
(ui+l - ui) cd(a + b + c)(b + c)  - ax4 + 0(h5)  = d ( c + d ) ( b + c + d ) ( a + b + c + d ) ( "  r+2 - Ui) - 

( U j - 4  - 24;). (45) 
24 24 - 

ab(b + c + d)(b + c) (ui-l - ") + a(a + b)(a + b + c)(a + b + c + d) 
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When ( 4 3 x 4 5 )  are substituted into ( 3 3 ,  it does not yield (34), implying that the derivation of 
Kawamura and Kuwahara’s method is inaccurate for variable grids. 

Appmximate Kawamura and Kuwahara derivation with variable grid 

derivation with (39). After substituting the variable grid analogue of (38), 
We can obtain an approximate form of Kawamura and Kuwahara’s technique by beginning the 

(ui+l - ui) 
au bcfa + b) b(a + b)(c + d )  
- + 0 ( h 4 )  = - 
ax (ui+2 - 

+ cd(a + b + c)(b + c)  d(c + d)(b + c + d)(a + b + c + d )  

(46) 
c(a + b)(c + d )  bc(c + d )  

a(a + b)(a + b + c)(a + b + c + d )  (24;-2 - Ui) ,  - 
ab(b + c + d)(b + c) (“-I - 

and (45) into (39), the resulting approximate formula for Kawamura and Kuwahara’s method on a 
variable grid becomes 

-bc(a + b)u; + 241u;J b(a + b)(c + d)ui - 241u;l 
(&+I - 24,) (‘:)I= d(c + d)(b + c + d)(a + b + c + d)(ui+2 - ”)+ cd(a + b + c)(b + c) 

c(a + b)(c + d)~; - 241uil ~ C ( C  + d)u; + 241uil - (24;-2 - U i ) .  (47) 
ab(b + c + d)(b + c) 

- 
+ a(a + b)(a + b + c)(a + b + c + d )  

1. 
2. 
3. 

4. 

5. 
6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 
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